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Abstract Computing the steady-state distribution in Mar-
kov chains for general distributions and general state space
is a computationally challenging problem. In this paper, we

consider the steady-state stochastic model W
d= g(W ,X)

where the equality is in distribution. Given partial distrib-
utional information on the random variables X, we want to
estimate information on the distribution of the steady-state
vector W . Such models naturally occur in queueing systems,
where the goal is to find bounds on moments of the waiting
time under moment information on the service and interar-
rival times. In this paper, we propose an approach based on
semidefinite optimization to find such bounds. We show that
the classical Kingman’s and Daley’s bounds for the expected
waiting time in a GI/GI/1 queue are special cases of the pro-
posed approach. We also report computational results in the
queueing context that indicate the method is promising.
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1 Introduction

In this paper, we study stochastic iterative models of the
form:

W n+1 = g(W n,Xn) for n = 0,1,2, . . . , (1)

where W n is the state of the system at instance tn with tn <

tn+1 for n = 0,1,2, . . . . The random vector Xn changes the
state of the system from Wn to W n+1 under the mapping g.
It is well known that any homogeneous Markov chain can
be represented as the iterative model in (1) for i.i.d Xn (see
Borovkov and Foss [6] and Müller and Stoyan [15]). When
steady-state exists, the model becomes:

W
d= g(W ,X), (2)

where the equality is in distribution. Our goal in this paper
is to obtain estimates on the distribution of the steady-state
vector W under (partial) distributional information on X. In
particular, given a finite set of moments on the distribution
of X, we obtain bounds on parameters of the distribution of
the steady-state vector W using (2). To motivate this prob-
lem, we focus on applications of the class of iterative models
in a queueing context.

1.1 Application in queueing systems

Since the pioneering work of Erlang, queueing systems have
been extensively studied with a focus on trying to analyti-
cally estimate, approximate or bound performance measures
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such as waiting time or number of customers in the queue
under varying assumptions on the inter-arrival and service
time distributions. Consider a queueing system where n =
0,1,2, . . . denotes the customer number entering the queue.
Assume that the first customer arriving finds the queueing
system empty. Let Tn denote the inter-arrival time between
nth and (n + 1)th customer and Sn denote the service time
for nth customer.

(a) For a single-server GI/GI/1 queue, the waiting time
of the nth customer in the queue (denoted by Wn) satisfies
the relationship:

Wn+1 = (Wn + Sn − Tn)+ for n = 0,1,2, . . . ,

where z+ = max(z,0). Assume that Sn are i.i.d random vari-
ables (Sn ∼ S, E[S] = 1/μ) and Tn are i.i.d random vari-
ables (Tn ∼ T , E[T ] = 1/λ). Under the assumption of inde-
pendence of Sn and Tn for each n, ρ = λ/μ < 1, the steady-
state waiting time distribution is known to be the unique so-
lution to the recursive equation (cf. Lindley [14]):

W
d= (W + S − T )+, (3)

where the equality is in distribution and W , S and T are
independent random variables.

(b) For a multi-server GI/GI/c queue with c servers,
the workload is defined as a c-dimensional vector process
W n := (Wn1,Wn2, . . . ,Wnc) where Wn1 ≤ Wn2 ≤ · · · ≤
Wnc. This workload process satisfies the relationship:

W n+1 = R((W n + Sne1 − Tne)+) for n = 0,1,2, . . . ,

where e1 = (1,0, . . . ,0), e = (1,1, . . . ,1) and R rearranges
the c components in ascending order. With ρc = λ/(cμ) < 1,
the steady-state distribution is the unique solution to the re-
cursive equation (cf. Kiefer and Wolfowitz [9]):

W
d= R((W + Se1 − T e)+), (4)

where the equality is in distribution and S and T are inde-
pendent of W . Here the first component of W , i.e., W1 is
the steady-state waiting time for the customer in the multi-
server queue.

It is clear from Table 1, the queueing systems in (a) and
(b) fall under the category of steady-state iterative models
defined by (2).

Table 1 GI/GI/1 and GI/GI/c queueing systems

Queueing system W X g(W ,X)

GI/GI/1 W ∈ �+ (S,T ) ∈ �2+ (W + S − T )+
GI/GI/c W ∈ �c+ (S,T ) ∈ �2+ R((W + Se1 − T e)+)

In each of these queueing systems, given moment infor-
mation on the random interarrival and service times, we are
interested in obtaining bounds on the moments or the tail
probability of the steady-state waiting time. One of the ear-
liest results in this context was derived by Kingman [10] for
GI/GI/1 queue. For the single server queue, given the mean
and variance of the inter-arrival and service times, he de-
rived an upper bound on the expected steady-state waiting
time using (3). We outline the proof next since it motivates
our approach. As in the original proof, we work with the
random variable X := S − T .

Proposition 1 (Kingman [10]) Let X := S − T . For a
GI/GI/1 queue with E[X] < 0, we have:

E[W ] ≤ var(X)

2|E[X]| . (5)

Proof Equating the first two moments of the random vari-
ables W and (W + X)+ in (3) gives:

E[W ] = E[(W + X)+],
E[W 2] = E[(W + X)2+].
Defining z− = max(−z,0), we have:

z− = z+ − z and z2− = z2 − z2+.

Setting z = W + X and taking expectations, we obtain:

E[(W + X)−] = E[(W + X)+] − E[W + X]
= E[W ] − E[W + X] = −E[X],

E[(W + X)2−] = 2E[W ]E[X] + E[X2]
(since E[WX] = E[W ]E[X]).

But E[(W + X)2−] ≥ E[(W + X)−]2, which implies

2E[W ]E[X] + E[X2] − E[X]2 ≥ 0,

or equivalently

E[W ] ≤ var(X)

2|E[X]| . �

The two-moment bound in (5) is based on relaxing the
equality of distributions to the equality of the first two mo-
ments. Kingman [11] and Daley [7, 8] used extensions of
this approach to develop bounds in both single and multiple
server queues. While these moment bounds are very popular
due to their simplicity, there exist some shortcomings:

(a) The upper bound on the expected waiting time in (5) is
known to be tight only for special instances (for example
in a D/D/1 queue). Furthermore, the bounds have been
observed to be very weak under light traffic conditions
(cf. Kingman [10]).
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(b) Few results are known that incorporate third and higher
order moment information in finding tighter bounds in
both single and multi-server queues (cf. Wolff and Wang
[17]).

(c) Few moment bounds are known on other parameters
of interest, such as the probability that the steady-state
waiting time exceeds a given value or the second mo-
ment of the waiting time.

These shortcomings arise due to the inherent difficulty in
solving the recursive (2) even for simple distributions of X

such as the normal distribution. In this paper, we address this
problem, by proposing a general algorithmic approach based
on the theory of moments and semidefinite optimization to
find bounds for a class of iterative stochastic models.

Our paper builds on the work of Bertsimas and Popescu
[5] and Lasserre [12], who present applications of moments
in the context of probability theory, Bertsimas and Popescu
[4] who present applications in option pricing and Bert-
simas, Natarajan and Teo [2, 3] who present applications
in combinatorial optimization under uncertainty. Related to
this paper is a model proposed in Chap. 12 in a recent book
by Lasserre and Hernández-Lerma [13]. Therein, the authors
introduce a moments approach for a special class of Markov
chains and propose bounds based on semidefinite optimiza-
tion. While the spirit of our method is similar, we crucially
show the potential of this approach in queueing analysis.

1.2 Structure and contributions of the paper

In Sect. 2, we outline the moments based approach to com-
pute bounds on parameters of the steady-state distribution
for a class of stochastic models. Particularly, by relaxing the
equality of distributions to the equality of moments and us-
ing the theory of moment cones, we formulate semidefinite
relaxations for this problem.

In Sect. 3, we develop semidefinite relaxations for the
GI/GI/1 queue under moment information on the inter-
arrival and service times. The first order semidefinite relax-
ation simply reduces to Kingman’s upper bound. Interest-
ingly, we can add higher order moment information and im-
prove significantly on Kingman’s bound clearly indicating
the potential of the approach.

In Sect. 4, we outline the extension of this approach to the
GI/GI/c queue and provide preliminary numerical results.
The first order semidefinite relaxation in this case is tighter
than Kingman’s bound.

2 Steady-state analysis

In this section, we formulate a general moments based ap-
proach to compute performance bounds on functions of the
steady-state vector W under partial distribution information

on X. Let ψw and ψx denote the probability measures of
W and X supported on Sw ⊆ �m and Sx ⊆ �n respectively.
The joint probability measure for (W ,X) (under indepen-
dence) is ψ = ψw × ψx with support S = Sw × Sx . The

steady-state recursive equation W
d= g(W ,X) can be repre-

sented as:

ψw = ψg−1, (6)

where ψw is the probability measure for W and ψg−1 is the
probability measure for g(W ,X). To formulate the problem,
we let α = (α1, . . . , αm) ∈ N

m and β = (β1, . . . , βn) ∈ N
n

denote the multi-indices in the basis of space of real-valued
polynomials in m and n variables of degree at most r respec-
tively:

{Wα}|α|≤r := (1,W1, . . . ,Wm,W 2
1 ,W1W2, . . . ,

W 2
m, . . . ,Wm−1W

r−1
m ,Wr

m),

{Xβ}|β|≤r := (1,X1, . . . ,Xn,X
2
1,X1X2, . . . ,X

2
n, . . . ,

Xn−1X
r−1
n ,Xr

n).

The notation Wα stands for W
α1
1 · · ·Wαm

m and |α| = ∑m
i=1 αi .

Likewise for X and β . For a given set of known moments
of X, our central problem is the following steady-state
model:

• Assume that we are given a finite set of moments for X

up to degree 2r . Given Borel measurable sets Sw ⊆ �m,
Sx ⊆ �n and Borel measurable functions f : Sw → �,
g : S → Sw , solve:

(P) sup/inf
ψw,ψx

Eψw [f (W )] (7)

s.t. ψw = ψg−1, (8)

ψ = ψw × ψx, (9)

Eψx [Xβ ] = mβ , ∀|β| ≤ 2r, (10)

Eψx [1] = Eψw [1] = 1, (11)

ψw ∈ M(Sw), ψx ∈ M(Sx), (12)

where M(Sw), M(Sx) is the set of finite positive Borel
measures supported by Sw and Sx respectively.

We explicitly add the constraints Eψx [1] = Eψw [1] = 1
in (P) to ensure that the measures are probability measures.
Since the probability measure of W is not uniquely deter-
mined in (P), solving (P) provides bounds on moments of
functions of W . We assume that the problem is well-posed,
namely there is sufficient information on X to guarantee a
finite value for Eψw [f (W )].
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2.1 A moments approach

To formulate the moments approach to solve (P), we make
the following key assumption about the iterative function g

and the objective function f .

Assumption 1 The function g : S → Sw is piecewise linear
and function f : S → � is piecewise polynomial1 over S .
Namely, there exist disjoint sets Sk such that the functions
gk(W ,X) are linear and functions fk(W ) are polynomial
of degree at most 2r on each Sk and S = ⋃K

k=1 Sk :

g(W ,X) = gk(W ,X),

if (W ,X) ∈ Sk, k = 1, . . . ,K,

f (W ) = fk(W ),

if (W ,X) ∈ Sk, k = 1, . . . ,K.

(13)

Furthermore, each set Sk is characterized by inequality con-
straints among polynomials of degree at most 2r . Such sets
are known as semi-algebraic sets.2

For the GI/GI/1 and GI/GI/c queues in Table 1, these sets
Sk are simply polyhedral sets.

Consider the joint probability measure ψ for (W ,X). Let
γ = (α,β) ∈ N

m+n denote the multi-indices in the basis of
space of real-valued polynomials in m + n variables of de-
gree at most r :

{(W ,X)γ }|γ |≤r := {(Wα,Xβ)}|α|+|β|≤r

= (1,W1, . . . ,Xn, . . . ,W
r
1 , . . . ,Wr−1

m Xn, . . . ,X
r
n).

2.1.1 Decision variables and objective

We define the decision variables as:

x
αβ
k := E[WαXβ |Sk]P [Sk],

and let xk := {xαβ
k }|α|+|β|≤2r be the vector of decision vari-

ables in this basis. With this definition, we can rewrite the
objective (7) as a linear function of the decision variables:

E[f (W )] =
K∑

k=1

E[fk(W )|Sk]P [Sk]

=
K∑

k=1

∑

|α|≤2r

f α0
k xα0

k ,

for appropriately identified coefficients f α0
k . The existence

of the coefficients is guaranteed from Assumption 1.

1Without loss of generality, we expand the definition of f (W ) from
Sw → � to f (W ,X) from S → �.
2For clarity, we work directly with the set Sk instead of the closure of
the set. This is a minor issue since we deal with continuous functions
and the results directly extend to the closure of the sets.

2.1.2 Constraints

We relax the equality of the distributions of W and g(W ,X)

in constraint (8) to the equality of moments:

W
d= g(W ,X)


⇒ E[Wα] = E[g(W ,X)α] ∀|α| ≤ 2r.

In terms of conditional expectations, this condition is ex-
pressed as:

K∑

k=1

E[Wα|Sk]P [Sk] −
K∑

k=1

E[gk(W ,X)α|Sk]P [Sk] = 0

∀|α| ≤ 2r.

By appropriately identifying the coefficients for the linear
functions gk , it is possible to re-express this condition as
linear constraints in the decision variables:

K∑

k=1

xα0
k −

K∑

k=1

∑

|γ |≤|α|
g

γ
kαx

γ
k = 0 ∀|α| ≤ 2r,

where
{
g

γ
kα

}
is the corresponding set of coefficients found

by taking the αth power of gk .
We relax the independence condition of W and X in con-

straint (9) by equating the moments of the product of the
variables to the product of the moments of the variables:

W ,X independent 
⇒ E[WαXβ ] = E[Wα]E[Xβ ]
∀|α| + |β| ≤ 2r.

With mβ = E
[
Xβ

]
, this condition is expressed as:

K∑

k=1

E[WαXβ |Sk]P [Sk] − mβ
K∑

k=1

E[Wα|Sk]P [Sk] = 0

∀|α| + |β| ≤ 2r,

which reduces to linear constraints on the decision variables:

K∑

k=1

x
αβ
k − mβ

K∑

k=1

xα0
k = 0 ∀|α| + |β| ≤ 2r.

For α = 0, the condition reduces to specifying the moments
of X in constraint (10).

To ensure the probabilities sum up to one in constraint
(11), we have:

K∑

k=1

P [Sk] =
K∑

k=1

x00
k = 1.
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Lastly, from constraint (12), we need to ensure that xk

represents a valid moment sequence of measures over the
support Sk . Define the cone of moments supported on Sk as:

M2r (Sk) = {
xk | xαβ

k = Eψk
[WαXβ ] ∀|α| + |β| ≤ 2r

for some ψk ∈ M(Sk)
}
,

Let M2r (Sk) denotes the closure of this cone. Then, we
must have

xk ∈ M2r (Sk), k = 1, . . . ,K.

Proposition 2 An upper/lower bound to the optimal objec-
tive value in problem (P) is obtained by solving the conic
optimization problem:

(Pr ) sup/inf
xk

K∑

k=1

∑

|α|≤2r

f α0
k xα0

k

s.t.
K∑

k=1

xα0
k −

K∑

k=1

∑

|γ |≤|α|
g

γ
kαx

γ
k = 0, ∀|α| ≤ 2r,

(14a)

K∑

k=1

x
αβ
k − mβ

K∑

k=1

xα0
k = 0, ∀|α| + |β| ≤ 2r,

(14b)

K∑

k=1

x00
k = 1, (14c)

xk ∈M2r (Sk), k = 1, . . . ,K. (14d)

Remarks
(a) Suppose, we are interested in finding bounds on the

pth moment of W for |p| ≤ 2r . In this case, the conic opti-
mization problem reduces to:

(Pr ) sup/inf
xk

K∑

k=1

x
p0
k

s.t. (14a–14d).

(b) Suppose, we are interested in computing bounds on
P [W ∈ W] where W is a semi-algebraic set. In this case,
we simply expand the partition to 2K sets using:

Sk ∩W and Sk ∩Wc for k = 1, . . . ,K, (15)

where Wc is the complement of W .

Clearly, (Pr ) is a moments-based relaxation for the origi-
nal problem (P) based on joint moments up to degree 2r .
The conic optimization problem (Pr ) provides upper and
lower bounds that become tighter as r is increased. For a

given distribution of X, this bound would converge to the
exact solution in the limit as r ↑ ∞ if:

(1) All the moments of X are known
(2) The moments of X completely determine the distribu-

tion of X and
(3) The distribution of X determines the distribution of W

uniquely

These conditions are however fairly strong typically.

2.2 Semidefinite relaxations

We now propose using semidefinite relaxations to solve the
conic optimization problem (Pr ). We use positive semidefi-
nite matrices to characterize the moment cone as in Lasserre
[12] and Zuluaga and Pena [18].

Given a sequence x = {xαβ}|α|+|β|≤2r , let Mr (x) denote
the moment matrix with rows and columns indexed in the
basis of polynomials of degree at most r . The entries of the
moment matrix are given as follows:

Mr (x)(1, j) = xα1β1 and Mr (x)(i,1) = xα2β2


⇒ Mr (x)(i, j) = xα1+α2,β1+β2 .

For instance, in the 2-dimensional case with m = 1, n = 1
the moment matrix for r = 2 is:

M2(x) =

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

x00 x10 x01 x20 x11 x02

x10 x20 x11 x30 x21 x12

x01 x11 x02 x21 x12 x03

x20 x30 x21 x40 x31 x22

x11 x21 x12 x31 x22 x13

x02 x12 x03 x22 x13 x04

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

.

A necessary condition for x to be a valid truncated moment
sequence is the positive semi-definiteness of the moment
matrix, namely Mr (x) � 0.

Additionally suppose the measure is supported on a poly-
nomial s(W ,X) ≥ 0 of degree either 2d − 1 (if odd) or 2d

(if even) with r ≥ d and the coefficients of the polynomial
given as s = {sγ }|γ |≤2d . A localizing matrix Mr−d(s,x) is
defined as:

Mr−d(s,x)(i, j) =
∑

|γ |≤2d

sγ xη(i,j)+γ ,

where η(i, j) is the subscript of the (i, j) entry in matrix
Mr−d(x). Suppose we have s(W,X) := W ≥ 0 in the pre-
vious example, then d = 1, s = (0,1,0,0,0,0) and

M1(s,x) =

⎛

⎜
⎜
⎝

x10 x20 x11

x20 x30 x21

x11 x21 x12

⎞

⎟
⎟
⎠ .
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In this case, an additional necessary condition for the
sequence to be valid moments over this support is
Mr−d(s,x) � 0. While these conditions are necessary, they
are not in general sufficient to ensure validity of moment
sequences.

Let the set Sk in (13) be defined by the intersection of a
finite set of polynomial inequalities:

Sk :=
⋂

s∈Sk

{s(W ,X) ≥ 0},

where 2ds −1 or 2ds represents the degree of the polynomial
s and r ≥ maxk maxs∈Sk

ds .

Proposition 3 A upper/lower bound to the optimal objective
value in problem (Pr ) is obtained by solving the semidefinite
optimization problem:

(Ps
r ) sup/inf

xk

K∑

k=1

∑

|α|≤2r

f α0
k xα0

k

s.t.
K∑

k=1

xα0
k −

K∑

k=1

∑

|γ |≤|α|
g

γ
kαx

γ
k = 0,

∀|α| ≤ 2r, (16a)

K∑

k=1

x
αβ
k − mβ

K∑

k=1

xα0
k = 0,

∀|α| + |β| ≤ 2r, (16b)

K∑

k=1

x00
k = 1, (16c)

Mr (xk) � 0, k = 1, . . . ,K, (16d)

Mr−ds (s,xk) � 0,

∀s ∈ Sk, k = 1, . . . ,K. (16e)

Clearly, the formulations are related as:

inf(Ps
r ) ≤ inf(Pr ) ≤ inf(P) ≤ sup(P) ≤ sup(Pr ) ≤ sup(Ps

r ).

The tightness of the semidefinite relaxations for a class of
problems as r ↑ ∞ has been shown in [13].

3 Lindley processes and the GI/GI/1 queue

We now study an application of the semidefinite optimiza-
tion approach in the analysis of a Lindley process [14].
While such a process was introduced in the context of
queueing, it is of independent interest for the theory of ran-
dom walks. Consider a discrete time process of the form:

Wn+1 = (Wn + Xn)+ for n = 0,1, . . . ,

where W0 = 0 and X0,X1, . . . are i.i.d. random variables.
Under the condition E[X] < 0, the steady-state version of
the Lindley process is:

W
d= (W + X)+. (17)

In this setting, Sw = �+, Sx = �, m = 1, n = 1 and
g(W,X) = (W + X)+. To formulate the semidefinite relax-
ations, we use the following result from the theory of ran-
dom walks.

Proposition 4 Consider a Lindley process (17) with
EX < 0. Then for p > 0, E[Wp] < ∞ provided that
E[Xp+1

+ ] < ∞. Furthermore, if E|X|p+1 < ∞ for some
p = 1,2, . . . , then

p∑

q=0

(
p + 1

q

)

E[Wq ]E[Xp+1−q ] = E[−(W + X)
p+1
− ]. (18)

Proof Refer to page 270 in [1]. �

Here (18) is obtained from the moment equality condi-
tion:

E[Wp+1] = E[(W + X)
p+1
+ ], (19)

and the relationship W + X = (W + X)+ − (W + X)−. For
clarity, we work directly with the condition (19) in the semi-
definite formulations.

3.1 Bounds on moments of W

Let

s1(W,X) := W ≥ 0 and s2(W,X) := W + X ≥ 0.

We then write the order r relaxation as follows.

Proposition 5 Given E[Xβ ] = mβ < ∞ for β = 1, . . . ,2r ,
an upper/lower bound on the pth moment of W in a Lindley
process for p < 2r is obtained by solving the semidefinite
optimization problem:

(Ps
r ) sup/inf x

p0
1 + x

p0
2

s.t. xα0
1 −

α−1∑

β=0

(
α

β

)

x
β,α−β

2 = 0, ∀α = 1, . . . ,2r,

x
αβ

1 + x
αβ

2 − mβ(xα0
1 + xα0

2 ) = 0,

∀α + β = 1, . . . ,2r,

x00
1 + x00

2 = 1,

Mr (x1),Mr (x2) � 0,

Mr−1(s1,x1),Mr−1(s1,x2),

Mr−1(−s2,x1),Mr−1(s2,x2) � 0.
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Proof For the Lindley process in (17), the piecewise linear
function g(W,X) = (W + X)+ can be expressed as:

g(W,X) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 for S1 = {(W,X) | W ≥ 0,

W + X ≤ 0},
W + X for S2 = {(W,X) | W ≥ 0,

W + X ≥ 0}.

(20)

Define the two sequences of decision variables as:

x1 = {xαβ

1 }α+β≤2r := {E[WαXβ |S1]P [S1]}α+β≤2r ,

x2 = {xαβ

2 }α+β≤2r := {E[WαXβ |S2]P [S2]}α+β≤2r .

The pth moment of W is then expressed as:

E[Wp] = E[Wp|S1]P [S1] + E[Wp|S2]P [S2]
= x

p0
1 + x

p0
2 .

Constraint (16a) can be expressed as

0 = E[Wα] − E[(W + X)α+]
= E[Wα|S1]P [S1] + E[Wα|S2]P [S2]

− E[(W + X)α|S2]P [S2]

= xα0
1 + xα0

2 − E

[
α∑

β=0

(
α

β

)

WβXα−β
∣
∣
∣S2

]

P [S2]

= xα0
1 + xα0

2 −
α∑

β=0

(
α

β

)

x
β,α−β

2

= xα0
1 −

α−1∑

β=0

(
α

β

)

x
β,α−β

2 .

Constraint (16b) can be expressed as:

0 = E[WαXβ ] − mβE[Wα]
= E[WαXβ |S1]P [S1] + E[WαXβ |S2]P [S2]

− mβ
(
E[Wα|S1]P [S1] + E[Wα|S2]P [S2]

)

= x
αβ

1 + x
αβ

2 − mβ(xα0
1 + xα0

2 ).

The probability of these events sum up to implying that

1 = P [S1] + P [S2]
= x00

1 + x00
2 .

Lastly, the semidefinite restrictions Mr (x1),Mr (x2) � 0
come from necessary conditions for the moment matrix. The
entries of the positive semidefinite localizing matrices are

defined as:

Mr−1(s1,xk)(i, j) = x
η(i,j)+(1,0)
k for k = 1,2,

Mr−1(−s2,x1)(i, j) = −x
η(i,j)+(1,0)

1 − x
η(i,j)+(0,1)

1 ,

Mr−1(s2,x2)(i, j) = x
η(i,j)+(1,0)

2 + x
η(i,j)+(0,1)

2

where η(i, j) is the subscript of the (i, j) entry in ma-
trix Mr−1(x). This comes from the defining inequalities
s1(W,X) := W ≥ 0 and s2(W,X) := W + X ≥ 0. �

Note that in Proposition 5, the sets S1 and S2 overlap
at W + X = 0. This is not a restriction since the objective
vanishes at W + X = 0.

Now consider the special case, where only the first two
moments for X are known and we are interested in finding
an upper bound on E[W ]. This is the classical setting in
which Kingman [10] developed his bound. Let E[X] < 0
and var[X] = σ 2 < ∞.

Proposition 6 The optimal objective value to the semidefi-
nite relaxation (Ps

1) equals Kingman’s bound:

sup P
s
1 = σ 2

2|E[X]| .

Proof The first order semidefinite relaxation for computing
an upper bound on E[W ] reduces to:

(Ps
1) sup x10

1 + x10
2

s.t. x10
1 − x01

2 = 0, (21)

x20
1 − x02

2 − 2x11
2 = 0, (22)

x01
1 + x01

2 = E[X], (23)

x02
1 + x02

2 = E[X]2 + σ 2, (24)

x11
1 + x11

2 − (x10
1 + x10

2 )E[X] = 0, (25)

x00
1 + x00

2 = 1, (26)
⎛

⎜
⎜
⎝

x00
1 x10

1 x01
1

x10
1 x20

1 x11
1

x01
1 x11

1 x02
1

⎞

⎟
⎟
⎠ ,

⎛

⎜
⎜
⎝

x00
2 x10

2 x01
2

x10
2 x20

2 x11
2

x01
2 x11

2 x02
2

⎞

⎟
⎟
⎠ � 0,

(27)

x10
1 + x01

1 ≤ 0, x10
2 + x01

2 ≥ 0, (28)

x10
1 , x10

2 ≥ 0. (29)

We construct a feasible solution to (Ps
1) that attains King-

man’s bound. This is sufficient since all the conditions used
to compute Kingman’s bound are included as constraints
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in (Ps
1). A feasible solution to the semidefinite relaxation is

constructed below. Let 0 < ε ≤ min(σ 2/(2E[X]2),1). Con-
sider:
⎛

⎜
⎜
⎜
⎝

x00
1 x10

1 x01
1

x10
1 x20

1 x11
1

x01
1 x11

1 x02
1

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

1 − ε 0 E[X](1 − ε)

0 0 0

E[X](1 − ε) 0 E[X]2(1 − ε)

⎞

⎟
⎟
⎟
⎠

,

⎛

⎜
⎜
⎜
⎝

x00
2 x10

2 x01
2

x10
2 x20

2 x11
2

x01
2 x11

2 x02
2

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎜
⎝

ε σ 2

2|E[X]| E[X]ε
σ 2

2|E[X]|
σ 4

4E[X]2ε
−σ 2

2

E[X]ε −σ 2

2 E[X]2ε + σ 2

⎞

⎟
⎟
⎟
⎟
⎠

.

It can be easily verified that these two matrices are positive
semidefinite thus satisfying condition (27). Furthermore for
0 < ε ≤ min(σ 2/(2E[X]2),1), conditions (28–29) are satis-
fied. Adding up the two matrices:

⎛

⎜
⎜
⎜
⎝

x00
1 x10

1 x01
1

x10
1 x20

1 x11
1

x01
1 x11

1 x02
1

⎞

⎟
⎟
⎟
⎠

+

⎛

⎜
⎜
⎜
⎝

x00
2 x10

2 x01
2

x10
2 x20

2 x11
2

x01
2 x11

2 x02
2

⎞

⎟
⎟
⎟
⎠

=

⎛

⎜
⎜
⎜
⎝

1 σ 2

2|E[X]| E[X]
σ 2

2|E[X]|
σ 4

4E[X]2ε
−σ 2

2

E[X] −σ 2

2 E[X]2 + σ 2

⎞

⎟
⎟
⎟
⎠

,

it can be verified that constraints (23–26) are satisfied. To
check the feasibility of constraints (21, 22) in (Ps

1), observe
that:

x10
1 − x01

2 = −E[X]ε,
x20

1 − x02
2 − 2x11

2 = −E[X]2ε.

As ε ↓ 0, both these values decrease to zero. Hence in the
limit with ε ↓ 0, the optimal objective value to (Ps

1) is x10
1 +

x10
2 = σ 2/(2|E[X]|). �

Thus with only two moment information, the semidef-
inite relaxation (Ps

1) gives Kingman’s bound. As we will
show in the computational results, the proposed approach
can easily handle higher order information for X and thus
improve the quality of the bounds significantly.

3.1.1 Computational results for Lindley process

We consider a Lindley process for a normally distributed
random variable X. Even in this simple case, there is no sim-
ple form for the distribution of W (see the discussion in [1],
p. 243). We use parameters E[X] = −0.25 and σ 2 = 0.25

Table 2 Bounds on E[Wp] for p = 1, . . . ,4 in Lindley process
(− indicates not defined)

Moments E[W ] E[W 2] E[W 3] E[W 4]

P
s
1-UB 0.500 ∞ − −

P
s
2-UB 0.376 0.341 0.477 ∞

P
s
3-UB 0.323 0.315 0.456 0.929

P
s
4-UB 0.310 0.304 0.449 0.907

P
s
5-UB 0.287 0.286 0.433 0.886

Simulation 0.265 0.275 0.415 0.830

P
s
5-LB 0.232 0.258 0.390 0.774

P
s
4-LB 0.199 0.241 0.372 0.734

P
s
3-LB 0.179 0.228 0.362 0.700

P
s
2-LB 0.146 0.217 0.200 0.167

P
s
1-LB 0 0 − −

Fig. 1 Bounds on E[W ] in the Lindley process

for X.3 The Lindley process was simulated over 500000
replications of X and the results were averaged to estimate
the first four moments of W . We compare this with the up-
per and lower bounds on E[Wp] for p = 1, . . . ,4 by solv-
ing higher order semidefinite relaxations, thereby incorpo-
rating more moment information on X.4 The lower and up-
per bounds from the semidefinite relaxations and the simu-
lated values are displayed in Table 2. The bounds on the first
moment E[W ] are also plotted in Fig. 1.

3The first ten moments are (−0.25, 0.3125, −0.2031, 0.2852,
−0.2744, 0.425, −0.5179, 0.8733, −1.2541, 2.2785).
4The experiments were run by a PC with a Intel Pentium 4-M 1.72 GHz
CPX, 256 MB of RAM and Microsoft Windows XP Professional op-
eration system. It was coded in MATLAB 7.04 and SeDuMi 1.1 [16]
was used as the solver for the semidefinite optimization problems.
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Fig. 2 Bounds on E[W ]/E[S] in the M/M/1 queue for r = 1 to r = 4

From the results, we observe that:

• With only two known moments (r = 1), we get exactly
Kingman’s upper bound for E[W ]. Furthermore, the two
moment lower bound on E[W ] is zero (cf. [11]).

• By increasing the order of the relaxation, we clearly get
tighter lower and upper bounds on the four moments of
W . The relative error on the upper bound for the first mo-
ment decreases from around 90% (r = 1) to around 9%
(r = 5). The results are clearly indicative of the potential
of the approach.

3.1.2 Computational results for M/M/1 queue

For a GI/GI/1 queue, it is possible to tighten the bounds by
directly working with the equality:

W
d= (W + S − T )+,

and using the additional information that S,T ≥ 0. We com-
pare the results from the first four semidefinite relaxations
with the exact expected waiting time for a M/M/1 queue.
The results are plotted in Fig. 2 for four different values of
ρ = 0.2,0.4,0.6,0.8 ranging from light to heavy traffic con-
ditions. It is clear that by increasing the order of the semi-
definite relaxation, we improve on the bound. Also for the
semidefinite relaxation of order r > 1, the expected waiting
time is clearly increasing with ρ which is not true for King-
man’s bound (r = 1).

In fact, Kingman’s bound in the GI/GI/1 queue has been
tightened by Daley [7] by using the additional inequality:

E[(T − S − W)2+] ≥ E[T 2](1 − ρ)2.

Such a moment inequality, simply reduces to an additional
linear constraint in the semidefinite optimization problem.

We can similarly recover Daley’s bound using the proposed
approach.

3.2 Bounds on tail probability of W

In this section, we derive moment based bounds on the
probability that W exceeds a given positive value w i.e.,
P(W ≥ w). Let

s1(W,X) := W ≥ 0, s2(W,X) := W + X ≥ 0 and

s3(W,X) := W − w ≥ 0.

Define:

S1 = {(W,X) | W + X ≤ 0, W ≥ w},
S2 = {(W,X) | W + X ≥ 0, W ≥ w},
S3 = {(W,X) | W ≥ 0, W + X ≤ 0, W < w},
S4 = {(W,X) | W ≥ 0, W + X ≥ 0, W < w},

where g(W,X) = 0 over S1 and S3 and g(W,X) = W + X

over S2 and S4. We then write the order r relaxation as fol-
lows.

Proposition 7 Given E[Xβ ] = mβ < ∞ for β = 1, . . . ,2r ,
an upper/lower bound on P(W ≥ w) in a Lindley process is
obtained by solving the semidefinite optimization problem:

(Ps
r ) sup/inf x00

1 + x00
2

s.t. xα0
1 + xα0

3 −
α−1∑

β=0

(
α

β

)

(x
β,α−β

2 + x
β,α−β

4 ) = 0,

∀α = 1, . . . ,2r,

4∑

k=1

x
αβ
k − mβ(

4∑

k=1

xα0
k ) = 0,

∀α + β = 1, . . . ,2r,

4∑

k=1

x00
k = 1,

Mr (xk) � 0, k = 1, . . . ,4,

Mr−1(s1,x3),Mr−1(s1,x4) � 0,

Mr−1(−s2,x1),Mr−1(s2,x2),

Mr−1(−s2,x3),Mr−1(s2,x4) � 0,

Mr−1(s3,x1),Mr−1(s3,x2),

Mr−1(−s3,x3),Mr−1(−s3,x4) � 0.
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Table 3 Bounds on P (W ≥ w) in the Lindley process

w 0.25 0.5 0.75 1 1.5 2

P
s
1-UB 1.000 0.736 0.555 0.438 0.306 0.235

P
s
2-UB 0.901 0.626 0.445 0.302 0.127 0.052

P
s
3-UB 0.690 0.505 0.359 0.236 0.103 0.049

P
s
4-UB 0.617 0.454 0.307 0.201 0.090 0.040

Simulation 0.319 0.205 0.125 0.076 0.028 0.010

P
s
4-LB 0.103 0.056 0.027 0.012 0.003 0.002

P
s
3-LB 0.074 0.035 0.017 0.007 0.003 0.001

P
s
2-LB 0.043 0.010 0.000 0.000 0.000 0.000

P
s
1-LB 0.000 0.000 0.000 0.000 0.000 0.000

Fig. 3 Bofunds on P (W ≥ w) in the Lindley process

3.2.1 Computational results

As before, we consider a Lindley process for a normally dis-
tributed random variable X with E[X] = −0.25 and σ 2 =
0.25. The simulated value obtained by over 500000 replica-
tions of X is compared with the semidefinite formulations
P

s
1 to P

s
4. The tail probabilities P(W ≥ w) were evaluated

for w = 0.25,0.5,0.75,1,1.5,2. The results are displayed
in Table 3 and Fig. 3.

From the results, we observe that:

• By increasing the order of the relaxation, we obtain tighter
lower and upper bounds on the probability P(W ≥ w).
The relative errors are typically larger for smaller values
of w.

4 The GI/GI/c queue

Consider a c server FCFS queueing system with renewal ar-
rival process and i.i.d service times. The dynamics of the

GI/GI/c queueing system is characterized by the workload
process vector W n := (Wn1,Wn2, . . . ,Wnc) with Wn1 ≤
Wn2 ≤ · · · ≤ Wnc . The workload vector is defined by the re-
cursion:

W n+1 = R((W n + Sne1 − Tne)+) for n = 0,1,2, . . . .

The service times Sn are i.i.d random variables (Sn ∼ S) and
interarrival times Tn are i.i.d random variables (Tn ∼ T ).
Under the assumption that ρc = λ/(cμ) < 1, the workload
process is known to be the unique solution to the recursive
equation (cf. Kiefer and Wolfowitz [9]):

W
d= R((W + Se1 − T e)+),

where the equality is in distribution and S and T are in-
dependent of W . The first component of W , i.e., W1 is
the steady-state waiting time for the customer in the multi-
server queue.

For the purpose of exposition, we focus on the GI/GI/2
queue wherein:

(W1,W2)
d= R((W1 + S − T )+, (W2 − T )+). (30)

Proposition 8 For a GI/GI/2 queue, the function R((W1 +
S −T )+, (W2 −T )+) is a piecewise linear function over five
polyhedral sets.

Proof For c = 2, the function is a piecewise linear function
over five polyhedral sets:

g(·) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

(W2 − T ,W1 + S − T ) if S1 = {(W1,W2, S, T ) ∈ �4+ | W1 + S − T ≥ W2 − T ≥ 0},
(0,W1 + S − T ) if S2 = {(W1,W2, S, T ) ∈ �4+ | W1 + S − T ≥ 0 ≥ W2 − T },
(W1 + S − T ,W2 − T ) if S3 = {(W1,W2, S, T ) ∈ �4+ | W2 − T ≥ W1 + S − T ≥ 0},
(0,W2 − T ) if S4 = {(W1,W2, S, T ) ∈ �4+ | W2 − T ≥ 0 ≥ W1 + S − T },
(0,0) if S5 = {(W1,W2, S, T ) ∈ �4+ | 0 ≥ W1 + S − T , 0 ≥ W2 − T }.

�
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In general for a c server queue, this is piecewise linear
function over c(c+3)

2 polyhedral sets. This can be observed
by noting that there are c positions for 0 relative to the or-
dered values W2 − T ≤ · · · ≤ Wc − T . If we index each of
these positions as i = 1, . . . , c, then there are c − i + 2 po-
sitions for the value of W1 + S − T relative to the ordered
values of 0 ≤ Wi+1 − T ≤ · · · ≤ Wc − T . This gives a total
of c(c+3)

2 polyhedral sets.

4.1 Bounds on moments of waiting time

Let

s1(·) := W1 + S − T ≥ 0, s2(·) := W2 − T ≥ 0 and

s3(·) := W1 − W2 + S ≥ 0.

Furthermore, let

s4(·) := W1 ≥ 0, s5(·) := W2 ≥ 0, s6(·) := S ≥ 0 and

s7(·) := T ≥ 0.

We then write the order r relaxation as follows.

Proposition 9 Given E[Sβ1T β2 ] = mβ1β2 < ∞ for β1 +
β2 = 1, . . . ,2r , an upper/lower bound on the pth moment
of the waiting time in a GI/GI/2 queue for p < 2r is ob-
tained by solving the semidefinite optimization problem:

(Ps
r ) sup/inf

5∑

k=1

x
p000
k

s.t.
5∑

k=1

x
α1α200
k −

α2∑

j=0

α2−j∑

k=0

α1∑

r=0

(−1)α2−j−k+α1−r

(
α2

j

)(
α2 − j

k

)(
α1

r

)

x
j,r,k,α1−j−k+α2−r

1

−
α1∑

j=0

α1−j∑

k=0

α2∑

r=0

(−1)α1−j−k+α2−r

(
α1

j

)(
α1 − j

k

)(
α2

r

)

x
j,r,k,α1−j−k+α2−r

3

− 0α1

α2∑

j=0

α2−j∑

k=0

(−1)α2−j−k

(
α2

j

)(
α2 − j

k

)

x
j,0,k,α2−j−k

2

− 0α1

α2∑

r=0

(−1)α2−r

(
α2

r

)

x
0,r,0,α2−r
4 = 0, ∀α1 + α2 = 1, . . . ,2r,

5∑

k=1

x
α1α2β1β2
k − mβ1β2

5∑

k=1

x
α1α200
k = 0, ∀α1 + α2 + β1 + β2 = 1, . . . ,2r,

5∑

k=1

x0000
k = 1,

Mr (xk) � 0, k = 1, . . . ,5,

Mr−1(s3,x1),Mr−1(s2,x1),Mr−1(s1,x2),Mr−1(−s2,x2) � 0,

Mr−1(−s3,x3),Mr−1(s1,x3),Mr−1(s2,x4),Mr−1(−s1,x4) � 0,

Mr−1(−s1,x5),Mr−1(−s2,x5) � 0,

Mr−1(s4,xk),Mr−1(s5,xk),Mr−1(s6,xk),Mr−1(s7,xk) � 0, k = 1, . . . ,5.

For the GI/GI/2 queue, the first constraint in Proposition
9 is obtained by equating the moments in (30):

E[Wα1
1 W

α2
2 ] = E[(W2 − T )α1(W1 + S − T )α2 |S1]P [S1]

+ E[0α1(W1 + S − T )α2 |S2]P [S2]

+ E[(W1 + S − T )α1(W2 − T )α2 |S3]P [S3]
+ E[0α1(W2 − T )α2 |S4]P [S4],

and using binomial expansions.
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4.1.1 Computational results

We now evaluate the quality of the bounds by comparing
the results with the M/M/2 queue. We focus on the dimen-
sionless quantity E[W1]/E[S]. For the M/M/2 queue with
ρ = λ/(2μ) < 1, the exact value for the expected waiting
time is:

E[W1]/E[S] = ρ2

1 − ρ2
. (31)

The two server upper bound obtained by Kingman [11] for
the M/M/2 queue reduces to:

E[W1]/E[S] = 1 + 3ρ2

4ρ(1 − ρ)
. (32)

We consider four different values of ρ = 0.2,0.4,0.6,0.8
ranging from light to heavy traffic conditions. The upper and
lower bounds on E[W1]/E[S] computed using the semidef-
inite formulations are displayed in Table 4 and Fig. 4.

We can observe the following from the results:

Table 4 Bounds on E[W1]/E[S] in the M/M/2 queue

ρ 0.2 0.4 0.6 0.8

Kingman-UB 1.750 1.542 2.167 4.563

P
s
1-UB 1.687 1.375 1.792 3.563

P
s
2-UB 0.262 0.527 1.162 2.877

P
s
3-UB 0.155 0.380 0.887 2.303

Exact 0.042 0.191 0.563 1.778

P
s
3-LB 0.000 0.035 0.245 1.180

P
s
2-LB 0.000 0.000 0.109 1.015

P
s
1-LB 0.000 0.000 0.000 0.000

Fig. 4 Bounds on E[W1]/E[S] in the M/M/2 queue

• In the multi-server case the first order relaxation given
only two moments is in fact tighter than Kingman’s up-
per bound [11]. While the bound in [11] is based on ex-
ploiting the symmetry of the sum and sum of squares of
the components of the workload vector, our formulation
in Proposition 9 uses the complete structure of the work-
load vector. An interesting open problem is to solve the
first order semidefinite relaxation for the GI/GI/c queue
in closed form, if possible.

• As in the single server case, we get tighter lower and
upper bounds by increasing the order of the relaxation.
The size of the semidefinite problems, however increases
rapidly with number of servers and the order of the relax-
ation.

5 Conclusions

In this paper, we have proposed a semidefinite optimization
approach to compute steady-state distributions with a focus
on queueing applications. The algorithmic approach system-
atically generalizes some of the known two moment bounds
to higher order moment bounds for the expected waiting
time in queues. The numerical results for the GI/GI/1 queue
and the GI/GI/2 queue are promising. It is natural to study
several extensions of this approach to tandem queues, fork-
join queues and queueing networks.
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2 decomposition for
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